17 research outputs found

    Knowledge discovery for friction stir welding via data driven approaches: Part 1 – correlation analyses of internal process variables and weld quality

    Get PDF
    For a comprehensive understanding towards Friction Stir Welding (FSW) which would lead to a unified approach that embodies materials other than aluminium, such as titanium and steel, it is crucial to identify the intricate correlations between the controllable process conditions, the observable internal process variables, and the characterisations of the post-weld materials. In Part I of this paper, multiple correlation analyses techniques have been developed to detect new and previously unknown correlations between the internal process variables and weld quality of aluminium alloy AA5083. Furthermore, a new exploitable weld quality indicator has, for the first time, been successfully extracted, which can provide an accurate and reliable indication of the ‘as-welded’ defects. All results relating to this work have been validated using real data obtained from a series of welding trials that utilised a new revolutionary sensory platform called ARTEMIS developed by TWI Ltd., the original inventors of the FSW process

    A novel framework employing deep multi-attention channels network for the autonomous detection of metastasizing cells through fluorescence microscopy

    Full text link
    We developed a transparent computational large-scale imaging-based framework that can distinguish between normal and metastasizing human cells. The method relies on fluorescence microscopy images showing the spatial organization of actin and vimentin filaments in normal and metastasizing single cells, using a combination of multi-attention channels network and global explainable techniques. We test a classification between normal cells (Bj primary fibroblast), and their isogenically matched, transformed and invasive counterpart (BjTertSV40TRasV12). Manual annotation is not trivial to automate due to the intricacy of the biologically relevant features. In this research, we utilized established deep learning networks and our new multi-attention channel architecture. To increase the interpretability of the network - crucial for this application area - we developed an interpretable global explainable approach correlating the weighted geometric mean of the total cell images and their local GradCam scores. The significant results from our analysis unprecedently allowed a more detailed, and biologically relevant understanding of the cytoskeletal changes that accompany oncogenic transformation of normal to invasive and metastasizing cells. We also paved the way for a possible spatial micrometre-level biomarker for future development of diagnostic tools against metastasis (spatial distribution of vimentin)

    Modeling and Optimal Design of Machining-Induced Residual Stresses in Aluminium Alloys Using a Fast Hierarchical Multiobjective Optimization Algorithm

    Get PDF
    The residual stresses induced during shaping and machining play an important role in determining the integrity and durability of metal components. An important issue of producing safety critical components is to find the machining parameters that create compressive surface stresses or minimise tensile surface stresses. In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows constructing transparent fuzzy models considering both accuracy and interpretability attributes of fuzzy systems. The new method employs a hierarchical optimisation structure to improve the modelling efficiency, where two learning mechanisms cooperate together: NSGA-II is used to improve the model’s structure while the gradient descent method is used to optimise the numerical parameters. This hybrid approach is then successfully applied to the problem that concerns the prediction of machining induced residual stresses in aerospace aluminium alloys. Based on the developed reliable prediction models, NSGA-II is further applied to the multi-objective optimal design of aluminium alloys in a ‘reverse-engineering’ fashion. It is revealed that the optimal machining regimes to minimise the residual stress and the machining cost simultaneously can be successfully located

    Granular computing neural-fuzzy modelling: A neutrosophic approach

    No full text
    Granular computing is a computational paradigm that mimics human cognition in terms of grouping similar information together. Compatibility operators such as cardinality, orientation, density, and multidimensional length act on both in raw data and information granules which are formed from raw data providing a framework for human-like information processing where information granulation is intrinsic

    Interval Type-2 Radial Basis Function Neural Network: A Modeling Framework

    No full text

    Input weighted data granulation using hybrid correlation measures with application to metal properties

    No full text
    This paper introduces a new data granulation algorithm using significance weights on the input space of the data set. This data granulation algorithm aims to provide a more reliable way of grouping data together by directing the data granulation to favor the most significant variables of the process under investigation. Such a data granulation algorithm assists in the elicitation of the initial rule-base of a fuzzy or neural-fuzzy model. A hybrid correlation index, called Significance Index, is introduced to rank the process variables based on the linear correlation coefficient and the partial correlation measure. The new algorithm is used to classify the process variables and subsequently model and predict mechanical properties of heat treated steel. The property under investigation is the Tensile Strength and the case study data set consists of chemical composition and microstructure measurements coupled with Tensile Strength measurements

    Multiple characterisation modelling of friction stir welding using a genetic multi-objective data-driven fuzzy modelling approach

    No full text
    Friction Stir Welding (FSW) is a relatively new solid state joining technique, which is versatile, environment friendly, and energy and time efficient. For a comprehensive understanding of the effects of process conditions, such as tool rotation speed and traverse speed, on characterisations of welded materials, it is essential to establish prediction models for different aspects of the materials' behaviours. Because of the high complexity of the FSW process, it is often difficult to derive accurate and yet transparent enough mathematical models. In such a situation, a systematic data-driven fuzzy modelling approach is developed and implemented in this paper to model FSW behaviour relating to AA5083 aluminium alloy, consisting of microstructural features, mechanical properties, as well as overall weld quality. This methodology allows constructing transparent fuzzy models considering both accuracy and interpretability attributes of fuzzy systems. The elicited models proved to be accurate, interpretable and robust and can be further applied to facilitate the optimal design of process parameters, with the aim of finding the optimal combinations of process parameters to achieve desired welding properties
    corecore